Sequential
The nnabla.core.sequential.Sequential
class represents a construction block of neural network.
Sequential
- class nnabla.core.sequential.Sequential(*args, **kwargs)[source]
A sequential block. User may construct their network by a sequential block. Importantly, the component within sequential block must be an instance of nn.Module.
For intuitive understanding, some small examples as follows:
import nnabla as nn import nnabla.parametric_functions as PF import nnabla.functions as F class ConvLayer(nn.Module): def __init__(self, outmaps, kernel, stride=1, pad=0): self.outmaps = outmaps self.kernel = (kernel, kernel) self.pad = (pad, pad) self.stride = (stride, stride) def call(self, x): x = PF.convolution(x, outmaps=self.outmaps, kernel=self.kernel, pad=self.pad, stride=self.stride) x = F.relu(x) return x # Example of using Sequentional layer = nn.Sequential( ConvLayer(48, kernel=1), ConvLayer(64, kernel=3, pad=1) ) # Example of using Sequentional with a specify name for each layer layer = nn.Sequential( ('conv1', ConvLayer(48, kernel=1)), ('conv2', ConvLayer(64, kernel=3, pad=1)) )